# PART THREE: COMMON CONTENT FOR THE SSAT AND ISEE CHAPTER 12

# **PRACTICE QUESTIONS**

- 1. What is the value of  $a(b-1) + \frac{bc}{2}$  if a = 3, b = 6, and c = 5?
  - (A) 0
  - (B) 15
  - (C) 30
  - (D) 45
  - (E) 60
- 2. If  $\frac{c}{d} = 3$  and d = 1, then 3c + d =
  - (A) 3
  - (B) 4
  - (C) 6
  - (D) 7
  - (E) 10
- 3. What is the value of x in the equation 5x 7 = y, if y = 8?
  - (A) -1
  - (B) 1
  - (C) 2
  - (D) 3
  - (E) 70
- 4. What is the value of x(y-2) + xz, if x = 2, y = 5, and z = 7?
  - (A) 12
  - (B) 20
  - (C) 22
  - (D) 28
  - (E) 32

- 5. If  $x = \sqrt{3}$ , y = 2, and  $z = \frac{1}{2}$ , then  $x^2 5yz + y^2 =$ 
  - (A) 1
  - (B) 2
  - (C) 4
  - (D) 7
  - (E) 8
- 6. If x + y = 7, what is the value of 2x + 2y 2?
  - (A) 5
  - (B) 9
  - (C) 12
  - (D) 14
  - (E) 16
- 7. What is the value of a in the equation 3a 6 = b, if b = 18?
  - (A) 4
  - (B) 6
  - (C) 8
  - (D) 10
  - (E) 18
- 8. If  $\frac{x}{y} = \frac{2}{5}$  and x = 10, y =
  - (A) 4
  - (B) 10
  - (C) 15
  - (D) 20
  - (E) 25
- 9. -5n(3m-2) =
  - (A) -15mn + 10n
  - (B) 15mn 10n
  - (C) -8mn + 7n
  - (D) 8mn + 7n
  - (E) -2mn 7n

# PART THREE: COMMON CONTENT FOR THE SSAT AND ISEE ALGEBRA

- 10. What is the value of  $(a + b)^2$ , when a = -1 and b = 3?
  - (A) 2
  - (B) 4
  - (C) 8
  - (D) 10
  - (E) 16
- 11. If s t = 5, what is the value of 3s 3t + 3?
  - (A) 2
  - (B) 8
  - (C) 11
  - (D) 12
  - (E) 18
- 12. (3d-7)-(5-2d)=
  - (A) d 12
  - (B) 5d 2
  - (C) 5d + 12
  - (D) 5d 12
  - (E) 8d + 5
- 13. What is the value of xyz + y(z x) + 2x if x = -2, y = 3, and z = 1?
  - (A) -13
  - (B) -7
  - (C) -1
  - (D) 7
  - (E) 19
- 14. If 3x + 7 = 14, then x =
  - (A) -14
  - (B) 0
  - (C)  $\frac{7}{3}$
  - (D) 3
  - (E) 7

- 15. If x is an integer, which of the following expressions is always even?
  - (A) 2x + 1
  - (B) 3x + 2
  - (C) 4x + 3
  - (D) 5x + 4
  - (E) 6x + 2
- 16. If 4z 3 = -19, then z =
  - (A) -16
  - (B)  $-5\frac{1}{2}$
  - (C) -4
  - (D) 0
  - (E) 4
- 17. If 3ab = 6, what is the value of a in terms of b?
  - (A) 2
  - (B)  $\frac{2}{b}$
  - (C)  $\frac{2}{b^2}$
  - (D) 2b
  - (E)  $2b^2$
- 18. If *x* and *y* are integers, in which equation must *x* be negative?
  - (A) xy = -1
  - (B)  $xy^2 = -1$
  - (C)  $x^2y = -1$
  - (D)  $x^2y^2 = 1$
  - (E)  $xy^2 = 1$
- 19. If *n* is an odd number, which of the following expressions is always odd?
  - (A) 2n+4
  - (B) 3n + 2
  - (C) 3n + 5
  - (D) 5n + 5
  - (E) 5n + 7

# PART THREE: COMMON CONTENT FOR THE SSAT AND ISEE CHAPTER 12

- 20. If  $5p + 12 = 17 4\left(\frac{p}{2} + 1\right)$ , what is the value of p?
  - (A)  $\frac{1}{7}$
  - (B)  $\frac{1}{3}$
  - (C)  $\frac{6}{7}$
  - (D)  $1\frac{2}{7}$
  - (E) 2
- 21. If  $\frac{2x}{5y} = 6$ , what is the value of y, in terms of x?
  - $(A) \ \frac{x}{15}$
  - (B)  $\frac{x}{2}$
  - (C)  $\frac{8}{2}$
  - (D) 15x
  - (E)  $\frac{30}{x}$
- 22. If *x* is an odd integer and *y* is an even integer, which of the following expressions MUST be odd?
  - (A) 2x + y
  - (B) 2(x + y)
  - (C)  $x^2 + y^2$
  - (D) xy + y
  - (E)  $2x + y^2$
- 23. If  $100 \div x = 10n$ , then which of the following is equal to nx?
  - (A) 10
  - (B) 10x
  - (C) 100
  - (D) 10xn
  - (E) 1,000

- 24. For what value of *y* is 4(y-1) = 2(y+2)?
  - (A) 0
  - (B) 2
  - (C) 4
  - (D) 6
  - (E) 8
- 25.  $\frac{3}{4} + x = 8.3$

What is the value of x in the equation above?

- (A) 4.9
- (B) 6.75
- (C) 7.55
- (D) 8
- (E) 9.05
- 26. If 2(a+m) = 5m 3 + a, what is the value of a, in terms of m?
  - (A)  $\frac{3m}{2}$
  - (B) 3
  - (C) 5m
  - (D) 4m + 33
  - (E) 3m 3

# **PRACTICE QUESTION ANSWERS**

## 1. C

Substitute a = 3, b = 6, and c = 5.

$$3(6-1) + \frac{6 \times 5}{2} = 3(5) + \frac{30}{2}$$
$$= 15 + 15$$
$$= 30$$

# 2. E

Since we're told the value of d, we can substitute it into the equation  $\frac{c}{d} = 3$  to find the value of c. We are told that d = 1, so  $\frac{c}{d} = 3$  can be rewritten as  $\frac{c}{1} = 3$ . Since  $\frac{c}{1}$  is the same as c, we can rewrite the equation again as c = 3. Now we can substitute the values of c and d into the expression 3c + d to get 3(3) + 1 = 10.

#### 3. D

We are told that y = 8, so first we'll substitute 8 for y, and then we can solve for x.

$$5x - 7 = y$$
$$5x - 7 = 8$$

Now we can add 7 to both sides:

$$5x - 7 + 7 = 8 + 7$$
$$5x = 15$$

Next we divide both sides by 5:

$$\frac{5x}{5} = \frac{15}{5}$$
$$x = 3$$

#### 4. E

Here we have three values to substitute. Remember, xz means x times z. After we substitute the values of x, y, and z, we will do the operations in PEMDAS order—parentheses, exponents, multiplication and division, addition and subtraction.

$$x(y-2) + xz = 2(5-2) + 2 \times 7$$
  
= 2(3) + 2 \times 7  
= 6 + 14  
= 20

#### 5. E

This is another "plug-in" question. Remember, 5yz means  $5 \times y \times z$ . First, we will replace x, y, and z with the values given. Then we will carry out the indicated operations using PEMDAS.

$$x^{2} - 5yz + y^{2} = (\sqrt{3})^{2} - 5 \times 2 \times \frac{1}{2} + 2^{2}$$

$$= 3 - 5 \times 2 \times \frac{1}{2} + 4$$

$$= 3 - 5 + 4$$

$$= -2 + 4$$

$$= 2$$

### 6. C

If you look carefully at the expression 2x + 2y - 2, you should see some similarity to x + y = 7. If we ignore the -2 for a moment, 2x + 2y is really just twice x + y. If it helps to make it clearer, we can factor out the 2, making 2x + 2y into 2(x + y). Since x + y = 7, 2(x + y) must equal 2(7), or 14. If we replace 2x + 2y with 14, the expression 2x + 2y - 2 becomes 14 - 2, which equals 12, (C).

#### 7. C

This question is solved the same way as question 3.

Plug in 18 for *b* in the equation:

$$3a - 6 = 18$$

Isolate *a* on one side of the equation:

$$3a = 18 + 6$$

$$3a = 24$$

Divide both sides by 3 to find the value of a: a = 8.

# PART THREE: COMMON CONTENT FOR THE SSAT AND ISEE CHAPTER 12

## 8. E

224

Substitute 10 for x in the equation:

$$\frac{10}{y} = \frac{2}{5}$$

Cross multiply:

$$(10)(5) = (2)(y)$$
  
 $50 = 2y$ 

Divide both sides by 2 to find the value of y:

$$\frac{50}{2} = \frac{2y}{2}$$
$$25 = y$$

#### 9. A

Distribute -5n to each term within the parentheses:

$$-5n(3m-2) = (-5n)(3m) + (-5n)(-2)$$

Multiply:

$$= -15mn + 10n$$

Note that (-5n)(-2) = +10n, because a negative times a negative yields a positive.

#### 10. B

Plug a = -1 and b = 3 into the expression:

$$(-1+3)^2 = (2)^2 = 4$$

# 11. E

The expression can be rewritten as 3(s-t) + 3.

Plug in 5 for s - t:

$$3(5) + 3 = 15 + 3$$

$$= 18$$

#### 12. D

Distribute the minus sign over the terms in parentheses: 3d - 7 - 5 - (-2d). Combine like terms:

3d minus -2d equals +5d, because subtraction is equivalent to "addition of the opposite." So 3d - (-2d) becomes 3d + (+2d), which is equal to 5d.

# 13. C

Plug in 
$$x = -2$$
,  $y = 3$ , and  $z = 1$ :  

$$(-2)(3)(1) + 3[(1 - (-2)] + 2(-2)]$$

$$= -6 + 3(3) - 4$$

$$= -6 + 9 - 4$$

$$= 3 - 4$$

$$= -1$$

#### 14. C

We have to rearrange the equation until the x is alone on one side of the equal sign. You must do the same thing to both sides of the equation. First, we will take away the 7:

$$3x + 7 = 14$$

$$3x + 7 - 7 = 14 - 7$$

$$3x = 7$$

$$\frac{3x}{3} = \frac{7}{3}$$

$$x = \frac{7}{3}$$

#### 15. E

Notice that the question asks which expression is always even. (E), 6x + 2, is correct because, first, the product of an even number and any integer is even, so 6x is even because 6 is even. Then, when two even numbers are added, their sum is also even, so 6x + 2 is even. (A) and (C) are always odd regardless of what integer is substituted for x. (B) and (D) are even only when x is even.

#### 16. C

We must rearrange the equation until the z is alone on one side of the equal sign. Anything we do to one

side of the equation we must also do to the other side. First, we'll add 3 to both sides:

$$4z - 3 = -19$$
$$4z - 3 + 3 = -19 + 3$$
$$4z = -16$$

Next, we'll divide both sides by 4:

$$\frac{4z}{4} = -\frac{16}{4}$$
$$z = -4$$

#### 17. B

Rearrange the equation until the variable a is alone on one side of the equal sign.

$$3ab = 6$$

$$\frac{3ab}{3} = \frac{6}{3}$$

$$ab = 2$$

$$\frac{ab}{b} = \frac{2}{b}$$

$$a = \frac{2}{b}$$

#### 18. B

Try each answer choice until you find the correct one.

- (A) xy = -1. If the product of two integers is negative, then one of the two integers must be negative. In this case, x could be negative, but it's possible that y is negative and x is positive. We're looking for an equation where x will always have to be negative.
- (B)  $xy^2 = -1$ . The exponent here applies only to the y, not to the x. The square of any non-zero number is positive, so whatever y is,  $y^2$  must be positive. (We know that y isn't zero; if it were, then the product  $xy^2$  would also be zero.) Since  $y^2$  is positive and the product of  $y^2$  and x is negative, x must be negative. (B) is the answer.

#### 19. B

We're told that n is odd, so we don't have to check to see what happens if n is even. We do have to try each answer to see which one represents an odd number. Let's say n = 3 and replace all the ns with 3s.

(A) 
$$2n + 4$$
.  $2(3) + 4 = 6 + 4 = 10$ . 10 is even.

(B) 
$$3n + 2 \cdot 3(3) + 2 = 9 + 2 = 11 \cdot 11$$
 is odd, so (B) is the answer.

#### 20. A

This equation takes a few more steps to solve than the previous ones, but it follows the same rules.

First, we multiply using the distributive law:

$$5p + 12 = 17 - 4\left(\frac{p}{2} + 1\right)$$

$$5p + 12 = 17 + (-4)\left(\frac{p}{2}\right) + (-4)(1)$$

$$5p + 12 = 17 + \left(-\frac{4p}{2}\right) + (-4)$$

$$+\left(-\frac{4p}{2}\right) \text{ is equal to } -2p, \text{ so } 5p + 12 = 17 - 2p - 4$$

Combine the integers on the right side:

$$5p + 12 = 13 - 2p$$

We can add 2p to each side to get all the ps on one side:

$$5p + 2p + 12 = 13 - 2p + 2p$$
$$7p + 12 = 13$$

Now we will subtract 12 from both sides:

$$7p + 12 - 12 = 13 - 12$$
  
 $7p = 1$ 

And lastly, we divide both sides by 7:

$$\frac{7p}{7} = \frac{1}{7}$$

$$p = \frac{1}{7}$$

## 21. A

We want to rearrange the equation until *y* is alone on one side of the equal sign. There's more than one way to do this, but here's one way:

$$\frac{2x}{5y} = 6$$

$$(5y) \frac{2x}{5y} = 6(5y)$$

$$2x = 30y$$

$$\frac{2x}{30} = y$$

$$\frac{x}{15} = y$$

# 22. C

This is another "try each answer" problem. We know that x is odd and y is even. Let's say that x = 3 and y = 4.

(A) 
$$2x + y \cdot 2(3) + 4 = 6 + 4 = 10$$
. 10 is even, so this isn't correct.

(B) 
$$2(x + y) \cdot 2(3 + 4) = 2(3 + 4) = 2(7) = 14$$
. 14 is even.

(C) 
$$x^2 + y^2$$
.  $3^2 + 4^2 = 9 + 16 = 25$ . 25 is odd, so (C) is correct.

## 23. A

This problem looks harder than it really is. If

$$100 \div x = 10n$$
, then  
 $(10n)(x) = 100$  or  
 $10nx = 100$   
 $nx = 10$ , (A)

## 24. C

Multiply through and solve for *y* by isolating it on one side of the equation:

$$4(y-1) = 2(y+2)$$

$$4y-4 = 2y+4$$

$$2y-4 = 4$$

$$2y = 8$$

$$\frac{2y}{2} = \frac{8}{2}$$

$$y = 4$$

# 25. C

Isolate *x* on one side of the equation:

$$\frac{3}{4} + x = 8.3$$

$$\frac{3}{4} + x - \frac{3}{4} = 8.3 - \frac{3}{4}$$

$$x = 8.3 - \frac{3}{4}$$

Then  $\frac{3}{4}$  can be rewritten as 0.75, and subtracting 0.75 from 8.3 gives you 7.55.

### 26. E

Multiply through and find a in terms of m by isolating a on one side of the equation:

$$2(a + m) = 5m - 3 + a$$
$$2a + 2m = 5m - 3 + a$$
$$2a = 3m - 3 + a$$
$$a = 3m - 3$$