PRACTICE DRILL 6—FUNCTIONS

1. Let $b^{*}=2 b+7$. What is the value of 5^{*} ?
(A) -1
(B) 6
(C) 14
(D) 17
2. If $\dot{\dot{C}} \dot{\dot{d}}=4 n-4$ and $\dot{\dot{C}} \dot{\dot{C}}=20$, what is the value of n ?
(A) 4
(B) 6
(C) 20
(D) 76
3. If $a \Delta b=4 a+3 b$, then $3 \Delta b=$
(A) $4 a+9$
(B) $7+3 b$
(C) $12+b^{2}$
(D) $12+3 b$
4. In the three-digit number, $3 H 8, H$ represents a digit. If $3 H 8$ is divisible by 3 , which of the following could be H ?
(A) 2
(B) 3
(C) 5
(D) 7
5. For any integer c, let $\langle\widehat{\langle }\rangle=2 c+c(c+3)$

What is $\langle\widehat{\langle 0\rangle}-\langle\widehat{\langle 3}$?
(A) 24
(B) 84
(C) 126
(D) 150

Practice Drill 6—Functions

1. D

In this equation, 5 will replace b. Thus, $2(5)+7=10+7=17$. The correct answer is (D).
2. B

Since the function is equal to 20 , it can be rewritten as $20=4 n-4$. Solve for n. Add 4 to both sides of the equation to get $24=4 n$. Divide both sides by 4 to get $n=6$. The correct answer is (B).
3. D

The value in front of Δ is a, and the value after Δ is b. Therefore, $3 \Delta b$ can be rewritten as 4(3) $+3 b$ or $12+3 b$. The correct answer is (D).
4. D

Use PITA to evaluate the expression and then determine if the resulting 3-digit number is divisible by 3 . The numbers 328,338 , and 358 are not divisible by 3 . The number 378 is divisible by 3 . The correct answer is (D).
5. \mathbf{C}

In this equation, the numerical value inside the \square will replace c where it appears in the equation. Thus, $\langle 10\rangle=2(10)+10(10+3)=20+10(13)=150$. Next find $\langle 3\rangle$, which is $2(3)$ $+3(3+3)=6+3(6)=24$. Finally, find 10\rangle, which is $150-24=126$. The correct answer is (C). Note: $\langle\hat{\langle 0\rangle}-\langle\hat{\langle 3}$ is not equivalent to $\langle\hat{7}\rangle$, which is (B).

