

1. What is the value of x ?

2. Triangle $P Q R$ is an isosceles triangle. $P Q=Q R$. What is the value of x ?

3. What is the area of right triangle $A B C$?

4. What is the area of the shaded region?

5. What is the area of triangle $D E F$?

6. What is the area of triangle $W X Z$? Triangle $Z X Y$? Triangle $W X Y$?

7. What is the length of line $Q R$?

8. What is the length of side $D E$?

9. What is the value of x ?

10. What is the length of the diagonal of rectangle $A B C D$?

11. What is the perimeter of square $A B C D$?

12. What is the value of x ?

Practice Drill 26-Triangles

1.

45°

$180^{\circ}-90^{\circ}=90^{\circ}$. Since two sides (legs) of the triangle are both 3, the angles that correspond to those sides are also equal to each other. Therefore, each angle is 45°, so $x=45^{\circ}$.
2. 70°
$180^{\circ}-40^{\circ}=140^{\circ}$. Since sides $P Q$ and $Q R$ are equal, then $\angle Q P R$ and x° are also equal to each other. Thus, divide 140° by 2 to find that each remaining angle is 70°. So $x=70^{\circ}$.
3. 6

Plug the base and height into the area formula for a triangle: $A=\frac{1}{2} b h=\frac{1}{2}(4)(3)=6$.
4. $\quad 12$

In this case, count the height and base of the triangle by counting off the ticks on the coordinate plane. The height is 6 and the base is 4 , which means that $A=\frac{1}{2} b h=\frac{1}{2}(4)(6)=12$
5. $\quad 12$

Plug the base and height into the area formula for a triangle: $A=\frac{1}{2} b h=\frac{1}{2}(4)(6)=12$.
6. $W X Z=5$
$A=\frac{1}{2} b h=\frac{1}{2}(2)(5)=5$
$Z X Y=15$
$A=\frac{1}{2}(6)(5)=15$
$W X Y=20$
$A=\frac{1}{2}(2+6)(5)=20$
7. 4.8

These are similar triangles since all the angles are the same. Set up a proportion to solve:
$\frac{M N}{N O}=\frac{P Q}{Q R}$, so $\frac{10}{6}=\frac{8}{Q R}$. Cross-multiply to get $10(Q R)=6(8)$. Divide both sides by 10,
and $Q R=4.8$.
8. $D E=8$

Since this is a right triangle, use the Pythagorean Theorem to find the missing side length: $a^{2}+b^{2}=c^{2}$, so $a^{2}+6^{2}=10^{2}$. Subtract 36 from both sides and $a^{2}=64$. Take the square root of both sides, and $a($ or $D E)=8$.
$9 . \quad 9.6$

These are similar triangles since all the angles are the same. Set up a proportion to solve:
$\frac{16}{20}=\frac{x}{12}$. Cross-multiply to get $16(12)=20(x)$. Divide both sides by 20 , and $x=9.6$.
10.

26
Remember that all angles in a rectangle are right angles. This diagonal ($A C$) cuts the rectangle into two right triangles, so use the Pythagorean Theorem to find the missing side length: $a^{2}+b^{2}=c^{2}$, so $10^{2}+24^{2}=c^{2}$, and $c($ or $A C)=26$.
11. 40

First, use the right triangle to find $A D$, which is one side of the square $A B C D .8^{2}+6^{2}=c^{2}$, so $c=10$. Since all sides of a square are equal, the perimeter is $10+10+10+10=40$ (or $10(4)=40)$.
12.

2.4

These are similar triangles since all the angles are the same. Set up a proportion to solve:

$$
\frac{6}{3+2}=\frac{x}{2} . \text { Cross-multiply to get } 5 x=6(2) . \text { Divide both sides by } 5 \text {, and } x=2.4 .
$$

