www.crackssat.com

PRACTICE DRILL 21—FOILING (UPPER LEVEL ONLY)

- 1. (x + 4)(x + 3)2. (x - 4)(x - 3)3. (x + 4)(x - 3)4. (a + b)(a - b)5. (a + b)(a + b)
- 6. (a b)(a b)

7. If $x^2 + y^2 = 53$, and xy = 14, what is the value of $(x - y)^2$?

Factor the following expressions:

8. $x^{2} + 13x + 42$ 9. $y^{2} - 3y - 10$ 10. $x^{2} - 12x + 35$ 11. $y^{2} + 11x + 24$ 12. $a^{2} - 5a - 14$ 13. $b^{2} - 11b + 30$ 14. $k^{2} + 16k + 63$

www.crackssat.com

Practice Drill 21—Foiling

1. $x^2 + 7x + 12$

FOIL: $x \times x = x^2$, $x \times 3 = 3x$, $4 \times x = 4x$, and $3 \times 4 = 12$. Add all these together to find that $x^2 + 3x + 4x + 12 = x^2 + 7x + 12$.

2. $x^2 - 7x + 12$

FOIL: $x \times x = x^2$, $x \times -3 = -3x$, $-4 \times x = -4x$, and $-3 \times -4 = 12$. Add all these together to find that $x^2 - 3x - 4x + 12 = x^2 - 7x + 12$.

3. $x^2 + x - 12$

FOIL: $x \times x = x^2$, $x \times -3 = -3x$, $4 \times x = 4x$, and $-3 \times 4 = -12$. Add all these together to find that $x^2 - 3x + 4x - 12 = x^2 + x - 12$.

4. $a^2 - b^2$

FOIL: $a \times a = a^2$, $a \times -b = -ab$, $a \times b = ab$, and $-b \times b = -b^2$. Add all these together to find that $a^2 + ab - ab - b^2 = a^2 - b^2$.

5. $a^2 + 2ab + b^2$

FOIL: $a \times a = a^2$, $a \times b = ab$, $a \times b = ab$, and $b \times b = b^2$. Add all these together to find that $a^2 + ab + ab + b^2 = a^2 + 2ab + b^2$.

 $6. \qquad a^2 - 2ab + b^2$

FOIL: $a \times a = a^2$, $a \times -b = -ab$, $-a \times b = -ab$, and $-b \times -b = b^2$. Add all these together to find that $a^2 - ab - ab + b^2 = a^2 - 2ab + b^2$.

7. 25

FOIL out $(x - y)^2$ to find $x^2 - 2xy + y^2$. Since $x^2 + y^2 = 53$, substitute 53 to find 53 - 2xy. Substitute 14 in for xy: 53 - 2(14) = 53 - 28 = 25.

8.
$$(x+6)(x+7)$$

Factor into two binomials. Since x^2 is the first term and both signs are positive, place an *x* and an addition sign in each of the binomial parentheses to find (x +)(x +). Now, find two factors of 42 that also add up to 13. 6 and 7 work, and since both binomials contain addition signs, the order does not matter.

9.
$$(y+2)(y-5)$$

Factor into two binomials. Since y^2 is the first term and the signs are opposite, place a yand opposite signs in each of the binomial parentheses to make (y +)(y -). Now, find two factors of 10 that also add up to -3. 2 and -5 work, so place 2 in the binomial with the addition sign and 5 next to the subtraction sign.

10.
$$(x-5)(x-7)$$

Factor into two binomials. Since x^2 is the first term and both signs are negative, place. COM an *x* and a subtraction sign in each of the binomial parentheses to make (x -)(x -). Now, find two factors of 35 that also add up to 12. 5 and 7 work, and since both binomials contain subtraction signs, the order does not matter.

11. (y+8)(y+3)

Factor into two binomials. Since y^2 is the first term and both signs are positive, place a yand an addition sign in each of the binomial parentheses to find (y +)(y +). Now, find two factors of 24 that also add up to 11. 3 and 8 work, and since both binomials contain addition signs, the order does not matter.

12.
$$(a+2)(a-7)$$

Factor into two binomials. Since a^2 is the first term and the signs are opposite, place an *a* and opposite signs in each of the binomial parentheses to make (a +)(a -). Now, find two factors of 14 that also add up to -5. 2 and -7 work, so place 2 in the binomial with the addition sign and 7 next to the subtraction sign.

13.
$$(b-5)(b-6)$$

Factor into two binomials. Since b^2 is the first term and both signs are negative, place a band a subtraction sign in each of the binomial parentheses to make (b -)(b -). Now, find two factors of 30 that also add up to 11. 5 and 6 work, and since both binomials contain subtraction signs, the order does not matter.

14.
$$(k+9)(k+7)$$

Factor into two binomials. Since k^2 is the first term and both signs are positive, place a kand an addition sign in each of the binomial parentheses to find (k +)(k +). Now, find two factors of 63 that also add up to 16. 9 and 7 work, and since both binomials contain addition signs, the order does not matter.