PRACTICE DRILL 8—QUANT COMP (MIDDLE AND UPPER LEVELS ONLY)

(A) means that column A is always greater
(B) means that column B is always greater
(C) means that column A is always equal to column B
(D) means that A, B, or C are not always true

Column A
Column B

1.	x	x^{2}
b is an integer and $-1<b<1$.		
2.	$\frac{b}{2}$	$\frac{b}{8}$
3.	p gallons	m quarts
x is a positive integer.		
4.	$\frac{x}{4}$	$\frac{x}{5}$
w is an integer less than 4. p is an integer greater than 10.		
5.	$p w$	w
6.	$4 c+6$	$3 c+12$

www.crackssat.com

Practice Drill 8—Quant Comp

1. B

Since there are variables in the columns, plug in a number. Pay attention to the restriction given: plug in a number greater than 1 for x. Let $x=4$. Column A is equal to 4 , and column B is equal to 4^{2}, or 16 . Since column B is greater, eliminate (A) and (C). Try a different number to see if column A could be greater or if the quantities could be equal. Since $x>1, x$ cannot be negative, zero, or one. Try a very large number. $1,000^{2}$ is much larger than 1,000 , so column B is still greater. You could also try a decimal, like 2.5. In this case, column B is still greater since $2.5^{2}=6.25$, which is greater than 2.5 . Therefore, since column B is always greater, the correct answer is (B).
2. \mathbf{C}

Read the question carefully: b is an integer and $-1<b<1$. There is only one integer between -1 and 1. Therefore, b must be o. Plug o in for b into each of the columns. Column A is $\frac{0}{2}=0$. Column B is $\frac{0}{8}=0$. The quantities are equal, so (C) is the correct answer.

3. D

Since there are variables in the columns, plug in values for p and m. For instance, let $p=16$ and $m=3$. Since it takes 4 quarts to make one gallon, column B is less than 1 gallon while column A is 16 gallons. This makes column A greater. However, the question does not state anything about requirements for these numbers, and the values could easily be reversed, that $p=3$ and $m=16$. The 16 quarts in column B is equal to 4 gallons, which is greater than the 3 gallons in column A. Since this could be true as well, it cannot be determined which quantity is larger. The correct answer is (D).

4. $\quad \mathbf{A}$

Since there are variables in the columns, plug in a number. Pay attention to the restriction given: if x must be a positive integer, plug in a positive integer for x. For example, let $x=3$. Column A is $\frac{3}{4}$ while column B is $\frac{3}{5}$. If you're not sure which value is greater, draw a picture. You can also use Bowtie to compare fractions. Column A becomes $\frac{15}{20}$, and column B becomes $\frac{12}{20}$. Thus, column A is greater. Eliminate (B) and (C). Try plugging in another value for x to see if another outcome is possible. Remember the restriction given, so x cannot be negative or zero, so try a large integer. Make $x=100$. Column A is $\frac{100}{4}=25$, and column B is $\frac{100}{5}=20$. Column A is still greater. You could also try $x=1$, but you will get the same result. Column A will be greater since $\frac{1}{4}=0.25$ is greater than $\frac{1}{5}=0.20$. The correct answer is (A).

Since there are variables in the columns, plug in values hom whe aecordingtothe. COM information given: w is an integer less than 4, so let $w=3$. You are also given that p is an integer greater than 10 , so let $p=11$. Therefore, column A is $(3)(11)=33$, while column B is equal to 3 . In this case, column A is greater. Eliminate (B) and (C). Now, try plugging in different numbers to see if another outcome is possible. Let $w=0$ and $p=12$. In column A, $(12)(0)=0$. This is equal to column B since $w=0$. Since column A isn't always greater nor are the two columns always equal, the correct answer is (D).
6.

D
Since there are variables in the columns, plug in a value for c. Let $c=2$. In column A, 4(2) + $6=8+6=14$. Do the same for column B: $3(2)+12=6+12=18$. In this case, column B is greater, so eliminate (A) and (C). Now, try a different number, perhaps a negative number. Let $c=-10$. Now, column A will read $4(-10)+6=-40+6=-34$. Do the same to column B: $3(-10)+12=-30+12=-18$. In this case, $-18>-34$, so column A is now greater. Since neither column is always greater, the correct answer is (D).

